
Breaking open the Bazaar: identifying and exploiting key
weaknesses in the OpenBazaar network

Richard Dennis
University of Portsmouth

Buckingham Building
Portsmouth

023 9284 6423

richard.dennis@port.ac.uk

 Gareth Owen
University of Portsmouth

Buckingham Building
Portsmouth

023 9284 6423

gareth.owen@port.ac.uk

ABSTRACT

 This paper provides the first analysis of the OpenBazaar

network; it identifies vulnerabilities within the current network by

developing and implementing multiple innovative new attacks to

further exploit OpenBazaar’s unique vulnerabilities. We conclude

by suggesting and testing countermeasures to these attacks on a live

network which not only make the network secure against a low-

medium resourced adversary but also enhance the speed and

storage capacity of the existing network.

Categories and Subject Descriptors

C.2.1 [COMPUTER-COMMUNICATION NETWORKS]:

Distributed networks, Network communications, Network

topology.

General Terms

Performance, Design, Reliability, Experimentation, Security.

Keywords

OpenBazaar, peer-to-peer, distributed networks, Kademlia, privacy

enhancing technologies, cryptographic protocols

1. INTRODUCTION
 In a post-Snowden world where trust in centralized services is

low and anti-censorship sentiment is at an all-time high, an e-

commerce network that is free, open sourced, decentralized and

resistant to censorship is a highly desirable prospect; hence the

launch of OpenBazaar in April 2014 [11]. OpenBazaar is a

decentralized distributed network that launched in April 2014. It is

a peer-to-peer online commerce network which uses Bitcoin as its

method of payment. Unlike current e-commerce networks, it has no

central point of failure and cannot be controlled by a single entity.

The internet has provided decentralized communication, Bitcoin

has provided decentralized currency, but currently there is no

decentralized trade.

 OpenBazaar is free software which connects users to

marketplaces hosted on a free volunteer network and, despite being

relatively new, it has quickly gained a large following. The rapidly

growing network currently has 726 active developers and

participants in its developer chat room, and in the past 12 months

2,827 markets have been established and begun actively trading

[1][8].

 OpenBazaar uses Kademlia distributed hash table (DHT)

implementation for peer discovery and queries, and communication

takes place directly between the client and marketplace instead of

being forced to go through a centralized server.

 The main advantages of OpenBazaar over more traditional

centralized marketplaces such as eBay or even Silk Road is that

there is no censorship, due to the decentralized design. OpenBazaar

enables goods to be purchased using Bitcoin, and offers protection

for both markets and customers by being the first network to

implement Ricardian-style contracts.

 The revolutionary introduction of notaries also sets OpenBazaar

apart from previous e-commerce marketplaces. A notary is a human

impartial third party who can look at evidence, such as tracking

details, if issues arise in a transaction they are notarizing and who

can then decide which party should get the money.

2. RELATED WORK
 This section examines the technologies used in OpenBazaar and

compares OpenBazaar with current alternatives. It also explains its

network topology and protocols as well as examining previous

attacks that have been conducted against the OpenBazaar network

architecture.

2.1 Tor Hidden Services
 Tor is an open-source project that is a decentralized low latency

mix network of specially configured nodes, commonly called

relays or bridges, which transmit only TCP traffic through virtual

tunnels from a client to a destination.

 Services such as websites can also be hosted within the Tor

network. These are known as “Hidden Services” and can only be

accessed through Tor. Tor Hidden Services were added in 2004,

when the second generation of onion routing was developed [3]. In

recent months, there have been several high profile “exit scams”

conducted by two of the largest marketplaces on Tor, Agora and

Evolution [11].

 An exit scam is when a marketplace that has traded legitimately

for months suddenly ceases to do so and, while still taking orders

and money from customers, starts refusing to send out items. This

can be achieved due to the use of an escrow account system, where

the customer pays the marketplace and the marketplace holds the

funds until the buyer has received the item. The escrow account

system relies on the marketplace being trustworthy as, unlike

OpenBazaar, there are no security implementations to prevent the

marketplace from withdrawing the cash.

 In OpenBazaar the nodes are currently arranged in a structured

Kademlia topology and the network uses the Kademlia distributed

hash table (DHT) to allow these nodes to find each other. Once a

node has received the IP address and port of the node they wish to

communicate with, they can set up a direct channel for

communication using UDP, without having to send all

communications through the P2P network.

2.2 Kademlia
 Kademlia is a P2P topology that was first described by

Maymounkov and Mazières in 2002 [9]. It has had widespread

success, and is currently used in multiple P2P networks, arguably

the most well-known of which is its use in BitTorrent. Kademlia is

a distributed hashtable overlay network that assigns each node a

global unique 160-bit identifier called the GUID, although the

process that assigns the GUID is down to individual

implementations [7]. This means that in some implementations

attackers are able to generate GUIDs, and as such it can be

considered a weakness [2].

 Jenkov [6] compares Kademlia and Chord and identifies one of

the most important features of Kademlia as being the use of XOR

to calculate the distance between two points. XOR was

implemented instead of standard subtraction methods, as seen in

other DHT’s such as Chord, because XOR is symmetrical.

Consequently in Kademlia when a node decides to leave the

network, it just has announce this to all the nodes in its routing

table, as all the nodes that have the leaving node in their routing

table also feature in the leaving node’s routing table [9]. This makes

leaving much easier, and more effective, than in Chord, as in Chord

a node has to find all nodes with the leaving node in their routing

table [10], thus taking significantly longer to process. In addition,

it is also possible to miss out and fail to notify some nodes. XOR is

also easier to calculate and when XOR is implemented the result

can fit into a single data type instance, which is not always possible

with other methods, such as the one used in Chord. Kademlia also

has a flexible routing algorithm which can select routes based on

latency or, as in OpenBazaar, send three parallel asynchronous

queries.

 Keong Lua et al. further expand on this, explaining how each

peer in the network stores triples containing the IP address, UDP

port and GUID of other peers; these are stored in K-Buckets, which

usually contain 20 items [7]. Maymounkov and Mazières warn us

that there is no guarantee that peers can be found, and explain how

Kademlia only locates nodes which are closer than the current node

to the target GUID [9].

 As nodes are encountered on the network, i.e. when searching

for a key for another peer, they are added to the K-buckets. These

K-buckets are ordered with the most recently accessed peer at the

tail [9]. K-Buckets provide a defense against some DOS attacks on

the network by not flooding the K-Buckets with new - and

potentially malicious - nodes; instead a node is only added to the

K-Bucket once another has left the network.

 Jenkov feels that the advantages of Kademlia over other P2P

topologies is that XOR is simple to calculate and the routing tables

(K-Buckets) make routing easier to manage and, arguably, more

efficient [6].

 Cholez et al. [2] describe how the organization of the routing

tables enables Kademlia to route a query in O(log(n)), thus

confirming Jenkov’s statement about the organization of the

routing tables making the network more efficient. However, they

dispute the statement made by Maymounkov and Mazières that the

K-Buckets prevent a Sybil attack, and demonstrate how a malicious

node could rewrite a legal K-Bucket entry.

 For a node to join the network, it must first know of a node on

the network; this can be a node pre-coded into the implementation

or found out-of-band. The node generates a GUID. As it is the client

and not the network that does this, it is possible that the node could

generate a GUID identical to that of another node. Wang et al. [12]

acknowledge this as a potential problem and propose a solution of

linking the IP address and port of the node to its GUID to prevent

a GUID clash; whilst this is a good idea, it has not been

implemented into the Kademlia protocol.

 Once the node has its GUID and knows another node in the

network, it can start to find other nodes. To do this, it queries its

GUID to the other node it knows; this returns the three possible

closest nodes which the new node will add into its K-Bucket; this

process is repeated until the nodes’ K-Buckets are full.

3. Methodology
 Experiments using multiple attacks were conducted in order to

determine the security of the OpenBazaar network.

 In OpenBazaar, anyone can run a node by simply downloading

the source code and running the application. The following newly

discovered attacks can be carried out by an adversary with very

limited resources, requiring only access to a computer and a stable

internet connection.

4. New attacks on OpenBazaar

4.1 Double-agent attack
 One of the major innovations of OpenBazaar is that it is the first

to have successfully implemented a multi-signature contract on a

P2P network. By requiring a majority of 2 out of the 3 signatures,

the multi-signature Ricardian-style contracts ensure no single entity

is able to withdraw the Bitcoins. This aims to prevent a situation

where a client buys goods from a market and the market does not

deliver the goods or service that was paid for.

 Currently, the client selects the notary. Once the client and

marketplace agree on the terms of a contract and the notary agrees

to fulfill the role, a multi-signature Bitcoin wallet is created using

the public keys from all three participants. This wallet is where the

customer sends the payment to be held until two of the three

participants use their private keys to release the funds.

 OpenBazaar assumes that this system is secure as both parties

can see the selected notary, however this system only provides

security if none of the actors in the transaction are able to collude

with each other. In the double agent attack, it is possible for the

notary to collude with a client to allow the client to receive both the

item and the Bitcoins that were used to pay for the item.

 The attack requires an attacker to create two nodes, one to act as

a buyer and one to be a notary. As this can be conducted from the

same machine, the potential cost of this attack is quite low. Nodes

do not require a certain uptime before becoming a notary in

OpenBazaar, so this attack can be set up and conducted within

minutes. To become a notary in OpenBazaar, a node announces to

the network that it offers the notary service.

 To conduct the attack, an attacker selects a target marketplace

which sells an item they would like. The client selects the notary it

controls and completes the transaction normally; the marketplace

thinks this is a genuine transaction and ships the item to the

customer. Once the client receives the items, the malicious client

and notary can then use their two private keys for the multi-

signature wallet to return the funds to the client. The marketplace

is unable to stop this as it only controls one of the three keys, and

therefore lacks the majority required to transfer funds. In this

scenario, the attacker now has both the item and the Bitcoins.

 This attack has been shown to have a 100% success rate, because

the client has the ability to select the notary and the marketplace

does not realize it is under attack until the client and notary collude

and withdraw the funds, by which point it is unable to do anything

about it.

 After this attack, a marketplace could block the attacker by

refusing to trade with the client and notary GUID, however as

GUIDs are not linked to data such as IP addresses, users can change

the GUID in the configuration file, which effectively renders this

defense useless.

 This attack could also feature a malicious marketplace and a

malicious notary. This is a slightly cheaper attack to conduct as the

attacker does not need the Bitcoins to buy the items first. However,

this attack has a higher risk of failure as the marketplace would

have to refuse any contract that does not contain a notary they

control.

 There are currently no restrictions on how many nodes an IP

address can possess. There is also no central authority, unlike the

Tor directory servers, which can monitor and approve nodes on the

network. These features of the OpenBazaar network mean it is

possible to Sybil attack the network. We conducted a Sybil attack

on the live network and on a simulated version of the network and

found it was extremely cheap, fast and effective to add thousands

of malicious nodes to the network from a single (or cluster)

machines with the only limitation being the amount of RAM each

machine had (1 instance of OB required 0.1GB of RAM)

 This variation of the attack could be combined with one of the

aforementioned Sybil attacks to greatly increase the chance of a

user selecting a notary controlled by the marketplace. This attack

would, however, be harder for the market to conduct long-term, as

word would soon get around that this marketplace was

untrustworthy, and clients would stop using them.

 This attack is very similar to the “exit scam” conducted by

Evolution and Agora on Tor. These marketplaces traded

legitimately for a long time before starting to take payments for

goods and not sending them (although these marketplaces used the

traditional send and receive payment and not multi-signature

addresses). OpenBazaar have claimed that this attack can no longer

be conducted due to the protection of the triple signed wallet, as

well as both parties having the ability to see the notary node,

however we have proven this not to be the case.

 This attack only has to control two nodes - the client and notary

- even on a 10,000,000 node network. This prediction was tested on

a simulator so as not to impact the real network and held true, with

a 100% success rate. This proves that even on a network containing

millions of nodes this attack is possible for an adversary with highly

limited resources.

 This attack works on the assumption that the marketplace accepts

the chosen client’s notary; in the tests on the live network this

assumption held true, but as the network grows and nodes develop

a reputation, a marketplace may choose to refuse to deal with notary

nodes with a less than ‘X’ reputation.

 The Double Agent attack has proven to be an effective attack

which only requires control of two nodes and which, when

simulated multiple times on a variety of network sizes (all of which

used identical communication to the real network), proved to be

successful 100% of the time. As only two nodes need to be

controlled in order for the attack to succeed, the success of the

attack is not dependent on the size of the network.

4.2 Impersonation attack
In the implementation of OpenBazaar at the time of writing (Beta

v4), the GUID of an OpenBazaar node is randomly created on

installation, however this can be changed by manually editing the

database. This attack demonstrates how it is possible to give two

marketplaces, notaries or clients the same GUID. By being able to

change the GUID of a node, it is possible to target and impersonate

a specified node, however there are some issues here. While an

attacker is able to impersonate the GUID, they can also impersonate

the marketplace; they would simply need to copy the items they are

selling and prices. Since each node hosts its own products and there

is no data redundancy, once an attacker impersonates a

marketplace’s GUID, it can impersonate the whole market.

However, an attacker cannot replicate the PGP address, as the

attacker doesn't know the private key of the marketplaces PGP.

 The ability to replicate a marketplace is not a useful attack on its

own; OpenBazaar protects users from malicious marketplaces by

using triple signature contracts. If, however, this attack were used

in conjunction with the double agent attack or the Sybil attack, it

would enable an attacker to use the reputation of a genuine

marketplace and be able to conduct an attack to gain Bitcoins.

 We created a 20,000 node OpenBazzar network using a

simulator; this replicates all functionality of the network, apart from

network latency. The impersonation attack was tested on a range of

GUIDs belonging to clients, notaries and marketplaces and had an

80% success rate. There are several reasons why 20% of the tests

failed; including the message failing to be delivered to the rest of

the network as a result of the UDP protocol and the target node

restarting while the attack was underway. This meant that although

the attack node impersonated the target for a brief amount of time,

when the target node successfully rebooted it would be the last node

to publish the ID and as such the legitimate node controlled the

GUID. It was calculated that on the current network a node is able

to update all other nodes on the network which contain a reference

to a certain GUID in under 5 seconds.

 Another issue found during the experiment was that the node

who joined the network last is the node who controls the GUID;

this could start a restart competition between the malicious node

and the legitimate node. The long-term effects of such a

competition on nodes already storing routing data for the GUID is

currently unknown.

The amount of time taken for the attacker’s GUID to replace the

legitimate one is normally very fast, averaging a few seconds. This

rapid updating through the network will make the attack harder to

spot and also more effective, as an attacker can quickly target the

whole network. As the network grows, however, the propagation

through the network will be slower.

 When used in conjunction with the Sybil attack, it has been

demonstrated that this attack can prevent new nodes from joining

the network by surrounding it with malicious nodes and preventing

the new node from discovering honest nodes.

 When we alerted the developers of OpenBazaar to this major bug

in their software, they quickly released a patched version which

generates its GUID from the PGP key [5], this however does not

prevent a clustering attack, where a node can generate thousands of

GUIDs and PGP keys in order to be able to “swarm” around a target

node and isolate them from the network. Later in this paper, we

discuss a stronger solution that is not vulnerable to this weakness.

4.3 Double sniper impersonation attack
 Expanding on the aforementioned impersonation attack, it is

possible for an attacker to target the entire transaction chain. An

attacker would first impersonate the marketplace, and then

skillfully impersonate the notary. With the ability to run two nodes

from a single machine, this attack has the same cost as the single

impersonation attack, and the attack cost will not increase as the

network size increases.

 For the attack to work, the attacker selects a marketplace to

attack and impersonates it using the same method previously

described. When a user buys an item from this cloned marketplace

and sends the contract containing his signature and chosen notary,

the marketplace can see the chosen notary, which is shown by only

its GUID. PGP keys, etc. for the notary are not included in the

contract; these would allow the attacker to see what notary the

target wanted to use and launch their impersonation attack, making

the attacker a notary that has the same GUID as the one requested

by the client, although as always with a different PGP key. The

client would then receive a triple signed contract from the attacker’s

cloned marketplace and notary.

 The attacker would control of two out of the three signatures in

the transaction, thus enabling them to withdraw the funds from the

multi-signature wallet. There are many ways in which an attacker

could ensure their attack is less likely to be detected, such as only

impersonating the market for a very brief amount of time, although

one issue with this is the amount of time it takes for all nodes to see

the attacker’s version of the marketplace. In the lab, this was <2

seconds, but it is possible that in the real world with a larger

network this time would be increased.

 The time taken to replicate the notary node, however, should not

serve as a warning to the client that it is under attack. Our findings

show that in practice most notaries do not sign contracts straight

away; it is a job that is conducted manually by humans and we have

witnessed signatures being provided from within a matter of

minutes to over a day.

 The only chance of the attacker’s marketplace/notary being

identified as an imposter would be if a client already knew the PGP

keys, and compared them to those of the marketplace. For the

average client this would not be possible, as the PGP keys for the

marketplaces/notaries are not stored anywhere in the network for

comparison.

 If the attacker were able to impersonate a marketplace such as

the Silk Road on Tor, which at its peak had a turnover of USD 1.9

million per month, the attacker would be set to make $60,000 a day.

However, no markets of Silk Road’s scale currently exist on

OpenBazaar - at present the majority sell a small number of items,

with the total number of transactions per day still in single figures.

4.4 Takedown attack
 Since OpenBazaar marketplaces do not have any redundancy, if

an attacker is able to take the marketplace offline, it will be

unavailable to the whole network until the marketplace is able to

get back online.

 It is therefore possible to target a specific marketplace and attack

it using a DOS attack. This is trivial as a user requests a marketplace

from the DHT and the node’s IP address and UDP port are returned.

This simple ability to discover the IP address and port of a node

makes it very vulnerable to a DOS (denial-of-service) attack. A

DOS attack aims to make a server inaccessible to clients by sending

large amounts of malicious traffic or by sending malformed packets

to use up the servers resources so it is unable to fulfill the requests

of genuine users [4]. A successful attack results in no other users

being able to connect with the targeted marketplace during the

attack.

5. Effective countermeasures
 We will now suggest a series of improvements that can be

implemented to the network that aim to prevent or significantly

increase the cost of attacks so as to make them unfeasible for an

adversary with only limited or moderate resources.

 Our solutions aim to maintain a high level of decentralization and

continue to allow anyone who wants to contribute and use the

network to join and use it.

5.1 Countermeasures to the double agent

attack
 Currently the double agent attack is successful because one party

- the client - selects a notary. This makes it is incredibly easy for a

client to ensure they also control the notary. Even expensive entry

requirements to the network may not deter an attacker from

becoming a malicious notary and it would still possible for a low-

resourced adversary.

 We propose that a user should not be able to be a client,

marketplace and notary simultaneously from the same machine.

This is because it is impossible to determine the trustworthiness of

a pseudonymous individual in different roles; for example, a person

who is a trustworthy marketplace may not be a trustworthy notary.

 One possible solution is to pool several nodes together and

require a majority to agree before the funds are released, although

this is a good solution, there are many issues with it, such as

increased resources being required per transaction and the question

of whether this would be justifiable on a $10 contract. This solution

does, however, provide security against an attack or situation where

if a single notary goes offline, money can still be awarded correctly.

 We recommend using a pool of seven notaries, as during our

calculations this gave the best balance between the total cost of

conducting a transaction and effective countermeasure to a Sybil

attack. It would also be possible and more efficient if the notary

pool size were dependent on the level of trust placed into a

marketplace, the cost of the item, and the cost to the notaries for the

transaction, should anything go wrong. As an example, for a $50

item, a pool of three notaries would be sufficient, while for a $1,000

item a pool of seven notaries would be preferred. This could be

automated or left to the user/marketplace to select the level of

security they require for a transaction. As trust between the user and

marketplace increases, e.g. due to previous successful transactions,

the number of notaries in a pool could then be lowered.

 We conducted several experiments to evaluate the effectiveness

of three possible solutions to prevent collusion between the client

and notary in the double agent attack. The first method is the current

notary selection where the client selects the notary; the second is

the notary pool selection, where seven notaries are randomly put

into a pool, which would require an attacker to control the client as

well as four out of seven notaries in the pool to conduct the double

agent attack. Finally, we evaluate how random selection of a notary

would deter the attacker. The adversary in our threat model is a low-

medium resourced adversary with a budget of $1,000 a month to

use to attack the network.

 We calculated the probability of each pool being controlled by a

malicious majority, using the equation below:

𝜌(𝑚) = (
𝑘

𝑚
)𝑝𝑚(1 − 𝑝)𝑘−𝑚

K is the size of the pool, and m is the number of malicious nodes.

This equation calculates the probability for a single combination of

malicious nodes and non-malicious nodes in a pool. For

completeness, we then calculated the probability based on the sum

of all possible combinations where the malicious nodes control a

majority of the pool.

 We created a simulator in order to verify the results from the

equation of the probability that a notary, or notary pool, would be

able to collude with the malicious client. To achieve this, the

simulator would create varying number of honest nodes with a

fixed amount of malicious nodes, with this figure being based on

the number of nodes that an attacker could compromise. We then

calculated the probability that each time a user selected a pool of

nodes, a majority of the pool would be malicious. This was repeated

10,000,000 times to improve the accuracy of the results.

 Figure 1 shows the chances of selecting a malicious notary or

notary pool if the new notary selection was implemented on today's

network without implementing our improvements in the network.

With the set budget, an adversary would be able to control 3,330

malicious notary nodes and, as shown, it is still highly probable that

they could control both the notary and client, even on a network of

50,000 nodes. A surprising find during the experiment was that, for

this network, random selection provided a better degree of security

to prevent a notary and client colluding in a network of up to 50,000

nodes, after this point the notary pool selection provides greater

security.

Figure 1. Probability of selecting a malicious notary (pool)

using three different notary selection algorithms on the

current network.

 Figure 2 shows the chance of selecting a malicious notary pool,

where at least four out of the seven notary nodes in the pool are

malicious. In this simulation, the adversary has the same $1,000 a

month to attack the network, but this simulation implements several

suggested improvements to the network in order to prevent the

Sybil attack. One of these improvements was to generate the GUID

of a node based on its IP address, in order to prevent multiple nodes

from being hosted on a single machine.

GUID = hash (IP_Address ⊕ UDP_Port)

In addition to preventing a single node from performing more than

one role, such as simultaneously being both a client and a notary,

our improvements also require each node to donate 20GB of

storage to the network to be used for marketplace mirrors.

These countermeasures aim to dramatically increase the cost of

entry to the network in order to make it prohibitively expensive to

all but the most well-funded adversary.

 If implemented in the OpenBazaar network, the solutions

proposed here would solve three possible attacks: the Sybil attack,

the impersonation attack and the sniper impersonation attack

 Now, the adversary would only be able to control 143 notary

nodes in the network compared to the 3,330 notary nodes they were

able to control without these improvements.

Figure 2. Probability of selecting a malicious notary (pool)

using three different notary selection algorithms on a network

with our solutions implemented.

 We can see from Figure 2 above that randomly selecting a single

notary results in a lower chance of a malicious node being selected

by around 10% while the network size is less than 200 nodes. As

the network size increases, however, the effectiveness of the pool

notary solution increases whilst the chances of selecting a

malicious notary pool dramatically decreases. Once the network

exceeds 100,000 nodes, the chances of selecting a malicious node

using both the random selection and notary pool is less than 0.5%.

 With such a small difference in selecting a malicious notary

using the random selection and pool in a large network, it could be

better for performance to use the random selection over a pool of

nodes. This only requires one notary to make a decision, rather than

waiting for seven notaries to respond. For low-medium value

transactions, this would make random selection a better solution in

a large network.

 The only reason the chances of selecting a malicious notary pool

and client is so high while the network is small is that with a budget

of $1,000 a month, attackers are able to Sybil attack the network;

an attacker with a lower budget would have less success with

networks of all sizes. Based on current predictions of network

growth, in practice an attacker with a budget of this level would be

unable to conduct a Sybil attack on the network.

 Overall, we have shown the current method of notary selection

to be open to abuse. An attacker controlling just two nodes is able

to launch the double agent attack and undermine the security

offered by a multi-signature wallet. We have proposed two

solutions to reduce the chances of a notary and client colluding, a

random selection algorithm, where a single notary is chosen at

random, and a notary pool, where notaries are randomly chosen to

form a pool and which requires a majority decision to release any

funds.

 We calculated the probability of selecting a malicious notary or

notary pool in the current network and a network which

implemented our previous recommendations. The results show that

both solutions provide greater security against the double agent

attack, and both provide less chance of collusion in a smaller

network size when the network has implemented our suggestions

compared to the current network. The difference in selecting a

malicious client and a randomly selected notary and a notary pool

is surprisingly small, especially as the network grows in size.

 We therefore recommend that while the network is small

(<10,000 nodes) the notary pool method should be used to select

the notaries. However, as the network grows it should be down to

the individual marketplace or client to select which method they

wish to use, with such a slim likelihood of collusion, both methods

would be suitable. Random selection would be faster as only one

notary needs to sign the contract and, if necessary, make a decision,

but, although slower, the pooled notary method would offer greater

security and thus be more appropriate for a higher-value contract.

We tested these assumptions on a simulated network which was

identical in function to the real OpenBazaar network and found our

results to be in line with these predictions.

5.2 Countermeasures to takedown attack
 The takedown attack was so effective and quick because on the

current network, marketplaces are hosted on a single node; there is

no data duplication across the network.

 To prevent this attack, it would be possible to cache the

marketplace when it was requested by the nodes that serve the

request; the more frequently requested, the longer the node would

keep it. This solution would be beneficial in two ways, firstly it

would speed up the network, making popular marketplaces

available faster, and it would also prevent an attacker from

performing the takedown attack as they would have to take multiple

nodes offline; this would be more difficult as an attacker would not

know the location of all the nodes containing a cached copy of the

marketplace.

 To prevent nodes altering the data being stored, it would be

important to encrypt the marketplace’s data. This would be done by

encrypting the data with the marketplace’s private key. This means

only the marketplace could have created the content; it also

increases trust in the network as you can be assured that the

marketplace data is from the correct marketplace and not a copy

from an attacker conducting the impersonation attack.

 This method is very similar to I2P disk cache, although it would

now be used for websites and not files, which results in a new issue

of how to keep all cached copies of the website up-to-date.

 This would be solved by a marketplace sending an

announcement out of the network when it would like to update its

website. While inefficient, it is the only method where the nodes

caching the web page would get the message, as the marketplace

would not know which nodes are caching a copy of their page. The

nodes caching the web page can then either delete their copy and

retrieve a new copy, or simply remove the copy from their cache

and wait for the web page to be requested before caching it again.

 The proposed solution takes advantage of the previously

suggested implementation of requiring each node to donate 20GB

of hard drive space to the network; this was to increase the cost of

becoming a node, but it is this space that would be used to provide

the cache, thus not requiring any more resources from a node to

implement this feature.

6. Future Work
 This paper has formed a basis upon which further research into

OpenBazaar can be conducted. One area of research would be to

evaluate the effect a trust value per node would have when

conducting these attacks. Could the double agent attack be

conducted with two low-trust nodes? Could trust values prevent the

impersonation attack?

 Another potential area of research for the future is research into

a DOS attack unique to OpenBazaar’s implementation which

would require less resources than conventional DOS attacks and

which could be launched from a single node, while being

undetectable as the source of the attack.

 It would be appropriate to re-run the attacks in this paper on a

larger live network, as it would be interesting to compare some of

the conclusions drawn in this paper to the realities of a larger

network and compare how the change in size of the network affects

these attacks.

 Finally, perhaps the most interesting research area is the

inclusion of anonymity into the network, how would this be

achieved? How would users be able to rate other anonymous users?

Would it facilitate or prevent the attacks mentioned in this paper

and would the addition of anonymity bring a new range of attacks?

This particular area of study is the focus of our ongoing research,

and we hope to publish more results in the near future.

7. Conclusion
 In this paper we have conducted the first analysis of OpenBazaar.

We have shown that the current network is small in size and

vulnerable to many attacks.

 We demonstrated a new and unique attack - the double agent

attack. This attack undermines the defenses offered by OpenBazaar

in the form of multi-signature, three party contracts. By controlling

just two nodes, an attacker was able to conduct the attack with a

100% success rate, regardless of the size of the network.

 The final attack we demonstrated was an impersonation attack.

We revealed a weakness in the generation of the GUID, which

allowed a malicious node to impersonate a node with a high success

rate; we showed how this could be done to marketplaces in order to

impersonate an established marketplace.

 Finally, we looked at solutions and countermeasures to all the

attacks we conducted on the OpenBazaar network. We were able to

show how the implementation of simple changes could not only

increase the cost of conducting the attacks beyond the budget of a

low-medium resourced adversary, but the changes were beneficial

to the network, providing the network with greater bandwidth as

well as storage space.

8. REFERENCES
[1] BazaarBay Statistics. Retrieved June 12 2015, from

BazaarBay: http://bazaarbay.org/stats

[2] Cholez, T., Chrisment, I., and Festor, O. Evaluation of Sybil

Attacks Protection Schemes in KAD. In AIMS 2009 – 3rd

International Conference on Autonomous Infrastructure,

Management and Security, (Enschede, Netherlands, 2009),

Springer, 70-82.

[3] Dingeldine, R, Mathewson, N., and Syverson, P. Tor: The

Second-Generation Onion Router. In SSYM’04 Proceedings

of the 13th conference on USENIX Security Symposium –

Volume 13, (San Diego, California, 2004), USENIX

Association Berkeley, 21-21.

[4] Garber, L. Denial-of-service attacks rip the Internet. In

IEEE Computer, 33 (4), 12-17.

[5] Generate GUID Use Signed Pubkey. Retrieved June 10,

2015, from GitHub:

https://github.com/OpenBazaar/OpenBazaar/pull/1300

[6] Jenkov, J. Peer Routing Table. Retrieved June 14, 2015,

from Jenkov Aps: http://tutorials.jenkov.com/p2p/peer-

routing-table.html

[7] Keong Lua, E., Crowcroft, J., Pias, M., Sharma, R., and

Lim, S. A Survey and Comparison of Peer-to-Peer Overlay

Network Schemes, IEEE Communications and Tutorial,

March 2004. 1-22.

[8] Maymounkov, P., and Mazières, D. Kademlia: A Peer-to-

Peer Information System Based on XOR Metric. In IPTPS

'01 Revised Papers from the First International Workshop

on Peer-to-Peer Systems, (Berkeley, California, 2002),

Springer-Verlag London, 53-65.

[9] Slack. Retrieved June 6, 2015, from OpenBazaar:

https://openbazaar.slack.com/

[10] Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M., and

Balakrishnan, H. Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications. In Proceedings of ACM

SIGCOMM ‘01 (San Diego, California, 2001), ACM, n.p.

[11] Stone, J. Evolution Downfall: Insider ‘Exit Scam’ Blamed

For Massive Drug Bazaar’s Sudden Disappearance.

Retrieved June 10, 2015, from the International Business

Times: http://www.ibtimes.com/evolution-downfall-insider-

exit-scam-blamed-massive-drug-bazaars-sudden-

disappearance-1856190

[12] The OB1 Team. OpenBazaar is Entering a New Phase with

Funding. Retrieved June 12, 2015, from the OpenBazaar

Blog: https://blog.openbazaar.org/openbazaar-is-entering-a-

new-phase-with-funding/

[13] Wang, P., Tyra, J., Chan-Tin, E., Malchow, T., Foo Kune,

D., Hopper, N., and Kim, Y. Attacking the Kad Network. In

Proceedings of the 4th international conference on Security

and privacy in communication networks, (Istanbul, Turkey,

2008), ACM, New York, n. pag.

